Phase-equilibrium-dominated vapor-liquid-solid growth mechanism.
نویسندگان
چکیده
The vapor-liquid-solid (VLS) growth model has been widely used to direct the growth of one-dimensional (1D) nanomaterials, but the origin of the proposed process has not been experimentally confirmed. Here we report the experimental evidence of the origin of VLS growth. Al(69)Ni(31) alloyed particles are used as "catalysts" for growing AlN nanowires by nitridation reaction in N(2)-NH(3) at different temperatures. The nanowire growth occurs following the emergence of the catalyst droplets as revealed by in situ X-ray diffraction and thermal analysis. The physicochemical process involved has been elucidated by quantitative analysis on the evolution of the lattice parameters and relative contents of the nitridation products. These direct experimental results reveal that VLS growth of AlN nanowires is dominated by the phase equilibrium of the Al-Ni alloy catalyst. The in-depth insight into the VLS mechanism indicates the general validity of this growth model and may facilitate the rational design and controllable growth of 1D nanomaterials according to the corresponding phase diagrams.
منابع مشابه
Toward a Comprehensive Model of Snow Crystal Growth: 3. The Correspondence Between Ice Growth from Water Vapor and Ice Growth from Liquid Water
We examine ice crystal growth from water vapor at temperatures near the melting point, when surface premelting creates a quasiliquid layer at the solid/vapor interface. Recent ice growth measurements as a function of vapor supersaturation have demonstrated a substantial nucleation barrier on the basal surface at these temperatures, from which a molecular step energy can be extracted using class...
متن کاملSelf-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid Mechanism
Nanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of practical applications. While post-growth techniques such as fluidic alignment might be one solution, selfassembled structures during growth such as branches are promising for functi...
متن کاملNanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth
Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to ...
متن کاملThe phase diagram of the two center Lennard-Jones model as obtained from computer simulation and Wertheim’s thermodynamic perturbation theory
The global phase diagram ~i.e., vapor–liquid and fluid–solid equilibrium! of two-center Lennard-Jones ~2CLJ! model molecules of bond length L5s has been determined by computer simulation. The vapor–liquid equilibrium conditions are obtained using the Gibbs ensemble Monte Carlo method and by performing isobaric-isothermal NPT calculations at zero pressure. In the case of the solid phase, two clo...
متن کاملSize-dependent phase diagram of nanoscale alloy drops used in vapor--liquid--solid growth of semiconductor nanowires.
We use in situ observations during high-temperature transmission electron microscopy to quantify the exchange of semiconductor material between Au-Ge vapor--liquid--solid seed drops and Ge nanowires (NWs). By performing simultaneous measurements under identical conditions on arrays with systematic variations in NW diameter, we establish the nanoscale size dependence of the temperature-dependent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 13 شماره
صفحات -
تاریخ انتشار 2010